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Introduction

This is a report on the work done during the third year of of this grant plus a six
month no-cost extension. The project was to develop theoretical models of several aspects
of accelerating arc plasmas in electromagnetic railguns with plasma driven projectiles.

The grant provided three months of support during the summer of 1986 for Dr. Huerta,
and a further two months during the summer of 1987. Dr. J. C. Nearing was supported for
two months during the summer of 1986. The other person who received support was Mr.
G. Christopher Boynton who is a graduate student doing his dissertation on this work. He
was supported fully during the whole year and a half.

A group of researchers on railgun problems was developed at the University of Miami
largely due to the support flowing from this project. There appeared a strong possibility
of funding by the SDIO(IST) office of a consortium proposed by Dr. Huerta, Dr. Harry S.
Robertson, and other faculty at the University of Miami. Several of us attended the 23 June
1986 EML Science Interchange Workshop at the Air Force Armament Laboratory of Eglin
Air Force Base that was sponsored by Dr. Leonard Caveny of SDIO(IST). There I presented
our research plans on fundamental processes in rapidly moving high current arcs. Soon
thereafter we received two letters of intent to fund. Delays kept coming up, however. Col
David Finkleman asked us several times to submit extensively revised proposals following
SDIO/IST instructions. I made a presentation to Drs. Dwight Dustin and Caveny, at
SDIO(ISDT) headquarters in Washington in February, 1987. Finally our proposal was
declined declined in April of 1987. A great deal of time and energy was wasted by the P.
I. and others during this process. The whole episode was a fiasco.

Description of the Technical Work

During the second year of this project Miss Ann Decker obtained her Ph. D. submitting
a dissertation on the effects of finite conductivity and compressibility on the development of
the Kruskal-Schwarzchild instability. The inclusion of finite conductivity effects produced
a fourth order eigenvalue equation for the modes. She did a numerical solution of the
equation and obtained a dispersion relation. Part of that work was presented by the P. I.
at the First EM Gun Armature Workshop, 24-26 June, 1986. In the course of preparing
this work for publication the P. I. found that Miss Decker had neglected to examine the
effects of a singularity in the fourth derivative term of the mode equation. This has called
for a revision of the problem. A physicist on a sabbatical visit from Argentina, Dr. Felix
Rodriguez-Trelles, has been of great help in this.

The work with Dr. Nearing concentrated on modeling the current in the rails for
arbitrarily time dependent current and velocity. Also the temperature distribution was
obtained in important cases. A paper on this work was submitted for the 4th Symposium
on Electromagnetic Launch Technology in Austin Texas during April 11-14 1988, and for
publication in the IEEE Transactions on Magnetics. A copy of this paper is attached.

The work with Mr. Boynton centers on a two dimensional time dependent simulation
of plasma armatures. We use the equations of resistive MHD and we use a two dimensional
FCT code to advance all quantities in time. A good deal of effort has also expended on
developing graphical methods that allow good display of the results. We have done several
runs in the University of Miami's VAX 8650, which does about 1,000 steps per hour of
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CPU time. A paper with some of the results of this work for an adiabatic case was also
submitted for the 4th Symposium on Electromagnetic Launch Technology in Austin Texas,
and for publication in the IEEE Transactions on Magnetics. A copy of this paper also is
attached. We have results beyond those prepared for the Austin conference. The last
figures attached represent the pressure in the plasma developing in time from 120,000 time
steps, 87pisec since firing, with the armature 4.6 cm down the barrel, in five figures until
the last one at 89.87,usec with a travel of 4.9 cm. The plasma was initially in mechanical
equilibrium with a 2% perturbation of the pressure near the rear of the armature. By the
time the armature has advanced only about 5 cm serious disruptions appear in it. Due to
the violent plasma motions the time step has to be reduced as we go along to satisfy the
Courant condition and prevent crashes due to numerical instabilities. This is having a bad
effect on the CPU time requirement.

Clearly this problem is one that requires a supercomputer. During the summer of
1988 Dr. Huerta and Mr. Boynton are going to be working at Eglin AFB under the USAF
Summer Faculty Research Program. We expect to be able to use the Cyber 205 at AFATL.
This would be of great benefit to our research.
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SKIN AND HEATING EFFECTS OF RAILGUN CURRENT
J. C. Nearing and M. A. HIuerta

University of Miami
Physics Department

Coral Gables, FL 33124

Abstract

Wc present a calculation in a simplified geometry for the current distribution in the
rails, taking into account the motion of the armature and the time variation of the current.
Closed form, asymptotic, results for the current density are obtained for arbitrary time
dependent currents and velocities, in the limit in which the length scale ko 1 is small, where
k0 = (jtoav). a- is the electrical conductivity of the rails, and v is the speed cf the armature.
Because of eddy current effects the rail current may reverse in portions of the rails when
the total current decreases. The current is used as a source of Joule heating to find the
temperature distribution in the rails. The heat diffusivity is negligible and we are able to
give numerical results concerning melting.*

Introduction

In a railgun the current goes into one rail, passes through the armature, and returns via
the other rail. The armature is immersed in the magnetic field produced by the rail currents
and experiences a strong magnetic force that pushes the projectile in front of it. The
distribution of current in the rails is one of the important factors in the operation of railguns
because it determines the rail resistance and the joule heating losses. A great deal of work
has been done to model this current distribution. Kerrisk"' 2 did a numerical calculation
of the current distribution and of the accompanying temperature distribution, allowing
the electrical conductivity to depend on temperature and the magnetic permeability to
depend on magnetic field strength. He treated carefully the two dimensional variations
in the rectangular cross section of the rails but neglected the variations in the direction
along the rails. Marshall 3 discussed qualitatively the problem of the variation along the
rails. Long 4 attempted a solution for a case with steady current and speed. Drake and
Rathmann 5 obtained infinite series solutions that described the variation of the skin depth
along the rail due to the motion of the armature.

In a railgun, the part of the rails ahead of the armature is in a region where there is
almost no magnetic field. As the armature sweeps along the rails, the rails are exposed
to the strong field behind the armature. Due to the rapid motion of the armature
along the rails, the current and magnetic field do not have time to diffuse completely
into the rails and are concentrated in a skin layer near the rail surfaces. We seek to

describe analytically how the magnetic field and current diffuse into the rails and what
the temperature distribution caused by the Joule heating is. The important skin depth
that arises can be written as 6 = V4ttoo, where t is the time since the magnetic field
started to diffuse into the conductor of conductivity a, and magnetic permeability /10.

There are several related problems presented by Knoepfel6 with known analytic solutions.

* This work supported in part by the Air Force Office of Scientific Research under grant

nujmber 84-0116.
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They involve the calculation of the magnetic field and current inside a semi-infinite space
bounded by a plane, or inside a cylinder, when the magnetic field outside is uniform in
space and has a known time dependence.

In order to elucidate thie effects of the motion of the armature, our analytic solution
takes into account the variations along the rail direction, x as shown in Fig. 1. The rails

Ak)

4 upper rail 5
x

-xo(t) muzzle
armature

breech current

2 3 lower rail 6~Figure 1

are taken as infinitely thick because their thickness is much greater than the skin depth.
We also take into account variations in the current density in the direction into the rails,
y. This will enable us to describe skin depth effects on the inside surface of the rails.
We simplify the geometry by neglecting variations in the z direction, in effect making the

4'" problem that of two rails of infinite height. In a complete treatment of the problem 4,(t)
in the armature would be determined by the properties of the armature in conjunction
with the properties of the rails. We model the armature by an assumed time dependent

distribution of current density in an armature moving to the right along the rails with an
arbitrary velocity vo(t) = dxo/dt.

We obtain rigorous general results for the current distribution in the rails and find the
temperature distribution for special cases. We get conditions for melting depending on the
current, and much less strongly on the length of the arc. We also give an expression for
the breech voltage in terms of the current, and discuss the circumstances when it reduces
to the simple expressions that are typically used in railgun circuit models. One of the
most interesting results is the reversal of current density in the rails, and possibly in the
armature, whenever the total rail current decreases.

Current Calculation

In the coordinate system shown in Fig. 1, the upper rail occupies the space y > 0.
The numbers 1-6 are used later to identify important voltages. The lower rail occupies

S the space y < -w and carries a current that is a mirror image of the current in the upper
rail. The armature between the rails occupies the space -w < y < 0 and has a current
density J(x, t)

JY(X, t) = -I'(t)f(X - eo(t))

where I' is the current per rail height, f represents the spatial distribution of the current
in the armature, and xo(t) is the position of the center of the armature. f is normalized

2
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to f f(x)dx = 1. Everything is independent of z, and only the x, y, and t dependencies
are to be determined. To analyze the fields resulting from this source, we write J, as a
Fourier integral

J(X,-t) d'- g(k)h(k,w)ei(k - wt), (-w < y < 0) (1)J 27r J 2r

In Maxwell's equations we neglect the displacement current compared to the conduc-
tion current because all the time constants considered are much larger than ,/O'. The
resulting equations are

VxB= 0 J and VxE---a

* In the domain y < 0, a vacuum, the magnetic field due to a current density J = ei(kz -wt)

! is
iz= 10 e i ( k z - wt )  (y < 0).

B -k

Taking the full J. of Eq. (1) into account we find the magnetic field for y < 0 to be

B(XYt) = -Iol'(t) dx'f(x') (y < 0), (2)

where = x - xo(t). The absolute value is the distance along the rail from the point
with coordinate x to the center of the armature. In arriving at (2) we have used the
integral {ej+C0 ik = 1 x<O

027r0-o 0 X > 0

where the path of integration goes above the pole at k = 0. The magnetic field of Eq. (2)
* is constant behind the armature, where < 0, and zero ahead of it, where > 0, as one

would expect in this geometry.
In the domain y > 0, the interior of the upper rail, the electric field is eliminated using

the conductivity equation, J = rE. Eliminating E and J from Maxwell's equations gives
the diffusion equation for the magnetic field

V 2  = (ou- (3)

4S The vector B has only a z-component. A single Fourier component is written B. =

F(y)exp [i(kx - wt)] (y > 0). When this is substituted in Eq. (3), the resulting equation
is

392 F + (iwryo - k 2)F =0,

30,



whose solution is

F(y) = k 2 -i 0 w. (4)

The coefficient for F(y) comes from the continuity of B, at y = 0.

Since the fields and currents must die off as y becomes large and positive, the sign of
the square root is R(a) < 0. In order to obtain the value of the magnetic field for y > 0,
we integrate over k and w in Eq. (1). The value of B for y > 0 will then be

B t=-ip0 d' I d 1 (5)
zkXY,)ZI~LOJ 2wr 2ir k(5

I(t')g(k)ei(k.-wt) ei(ko(t')-wt')

The w integral can be done with no further assumptions on the time dependence of I',
or the shape f of the armature's current distribution. The integral f eaY-iw(t-t')dw/27r is
zero for t < t'. The integrand has a branch point at w = -- ik 2/0oa., so when t > t', we
deform the contour around this branch toward -ioo. Change variables to s = iw - k 2 /ttou
and observe that the imaginary part of the integral vanishes. Using integration by parts
we obtain

B2 = -iro dt' I(t )  A 1g(k)eik(z(t)) (6)

Y owor e- k2(t-tl)/uoa e-V 21LO° / 4( t - t ' ) y > O.
'-2 V'rt 9

The integral of Eq. (6) is a general expression for the magnetic field in this geometry. (The
behavior of this expression as y --+ 0 needs to be treated carefully.) In order to make further
progress on this integral, it is necessary to assume a shape for the current distribution in
the armature. We have considered several forms for f(x). One of the simplest forms to
take that yields interesting results is

:. fz)=1 (-L.<x<L).

With this form, the k integral of Eq. (6) can be done. It is of the form
S1l sinkLeik._,k2

~27r k kL

S, The contour goes from -oo to +00, passing above the singularity at k = 0. Bring the
contour down to the real-k axis, and we get a principal value integral plus a semi-circular
contour just over the pole at zero. Only the cosine part of exp(ikx) contributes to the
latter, and only the sine part to the former. This integral is then

i i f00dk sin kL sin kx e_ 22+7r 0A k L kxe

24



We combine the two sines into the difference of cosines and use a tabulated7 integral to
obtain

B {(x,y,t)  o- -Ltrf( L

j (x - + L)erf [(x - x + L) Vunoj4(t')]
2L I I

-(xoL)2 poa/4(t-t')]} (7)

The above expression for the magnetic field allows an arbitrary thickness L for the
* armature, an arbitrary time dependence for the current 1(t), and a general time dependence

for the armature position xo(t). The curl of this expression for B, will give the current
density. Rather than writing down the complicated expressions that result in the general
case, we will specialize to two cases of interest. In the first case we consider a thin armature
(L -* 0) with a general time dependent current and velocity. The thin armature case
simplifies the derivation of an approximate current-voltage relation for the railgun. It
also allows a closed form analytical expression for the temperature rise caused by very
concentrated currents. In the second case we will consider a thick armature but with the
current and the velocity kept constant in time. This case is of interest because we are able
to calculate the temperature rise of the rails for realistically large arcs.

Time dependent results for a thin armature

A thin armature could represent the sort of current spots ,or filaments, that are
observed. In this section, then, I'(t) could represent the current in a spot, and not the
total current through the rail. Of course, due to the two dimensional nature of our model,
the spot is really modeled as a sheet. The thin armature result is obtained by taking the
limit as L -+ 0 in Eq. (7)

B=(xyt) -LY J dt' I'(t')(t - t')- 3 /2  (8)

.e-v 2
Aoa,4(t-t') [1 - erf [(- xo(t')) X/-oo/4(t- )]].

The curl of this expression for B, will give the current density J. The singularity as y 0
is best treated by rewriting B, as

B (xy, t) - P0 [ dse-I (t ) i - erf [(x - xo(t'))1 , (9)

5
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where t' =t - y 2 oLo4s 2. The form of (9) is well behaved as y -+ 0. The current is

J (X,y,t) -2 j dke-k 2Y2 I'(r)eU 2 [ p #o: dxo(-)]

1 o -k2 .uou Cderf(u)]d'(r)
77 ae"u ' (10)

and
2 00 0 _2

J(-' = _-Y [*k ke_- I'111~
ir 1o

where u k [x-xo(r)], and r = t-LOooT/4k 2. The simplest special case is where the current
is constant, I'(t) = I', and the velocity of the thin armature is also constant, xo(t) = vt.
The above integrals for the current can then be evaluated in closed form throughout the
rails,

S_ I'kO e-k° /2 [Ko(kor/2) - -K(kor/2)], (12)

2 Ir r

and
I'kO y e-k.oQ2Ki(kor/2), (13)

=-27r r

where k0 = u0oav is an inverse length that can be used to scale all of the variables,
r = V 2 + y2 is the distance from the field point to the present position of the armature,
was defined below (2), and the K's are Bessel functions of the second kind with imaginary
argument. At a distance from the current source large compared to ko 1, the current
density of Eqs. (12) and (13) has the asymptotic form8

j -, e - ko(f+r)/2 y- - . (14)

2 7r kTOr K r

From here one can show that the shape of these flow lines is parabolic at large distances
from the origin. In Eq. (14) the space in front of the armature has > 0 and r > 0 so the
exponential is damped very quickly (for large ko) giving negligible current ahead of the
armature as expected. Behind the armature, < 0, there is damping for y > 0, but along
the rail surface the exponent is zero.

The current of Eqs. (10) and (11) can be evaluated asymptotically for a general
armature current and velocity. The integraa are approximated using the method of
steepest descent; We have done this calculation. It is straightforward but somewhat long.
In the region where xo(t) - x > y > 0 there is a much simpler way to obtain the current.
For large o the argument of the error function in Eq. (9) varies rapidly. We make the
approximation that the error function is a step function, with 1 - erf(x) ; 2 for x < 0,
and 1 - erf(x) - 0 for x > 0. Then the magnetic field of Eq. (9), behind the armature
where x = - xo(t) < 0, is approximately

B,(x, y, ) j2 dse_, 2i,(t - Poy2/4s 2 ), (15)
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with s,, = y/b, and we have introduced a skin depth 8 defined by

b 4(t - tX) (16)

where 1, < t is the time when the armature passes position x, defined by xo(t;) = x.
Eq. (15) has a pleasing form and is similar to some of the results in Knoepfel. 6 We obtain
the currents from the curl of Eq. (15),

J' l lt - 2 [ 'te-'b (17)

tt 2 r/4(t-t') .212
+jd dte11a -yl

and
--1 Y ),'(t) )e - 2 (18)

where v., is the velocity at time t.. We have written J. in Eq. (17) so that the first term
contains P(t). If that term is combined with the second term in the integral it can be
seen that the first term would then contains I'(tr). We note that even if I'(t) remains
positive, J, (x,y, t) may become negative because of the term with dI/dt, whenever the
current decreases. Eqs. (17) and (18) are very accurate when we are just a few lengths
(poav)- ' away from the present position of the armature. This was verified by extensive
comparisons with numerical evaluations of the exact expressions in Eqs. (10) and (11).

The length ko 1 is very small in typical rail launcher situations. For the case of copper
at room temperature, and a speed of 1 km/sec, the length ko' = 1.25 x 10- ' meters.

0.12 cm
current flow

Figure 2 1.75 cm
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A picture of the current flow for these parameters is shown in Fig. 2. The acceleration is
8 X 107 m/s 2 . Here the lines are tangent to the current density vector J and the curves
are drawn at equal increments of current; the last curve includes 95% of the total current.
The current has passed its peak and is decreasing. Some reverse current flow is evident in
the graph in regions where J,(z,y, t) has become negative. This should not be surprising.
This reverse current is just an eddy current that is trying to keep the magnetic field in the
rail from dropping in value as the total rail current decreases. The total horizontal scale
is 1.75 cm; the total vertical scale is expanded to 0.12 cm.

Breech and Mazzle Voltages

There are several circuit mod~ej8_used to describe rail launchers as circuit elements;
these require expressions for the voltages in terms of the currents. These expressions can
be obtained by application of the theorem

d f B dSB - Vx(uxB) + (V. B)u . dS,

where the surface integral is taken over a surface moving with local velocity u. For the
* magnetic field B, using Maxwell's equations, we obtain

d f B dS J [E+u x B].dr, (19)

where the closed line integral is taken over the moving path. In a moving conductor Ohm's
law is J o'(E + u x B).

For simplicity we will derive the circuit equations using the thin armature results.
Integrating Eq. (19) around the path 3-4-5-6 shown ahead of the armature in Fig. 1, we
find that the muzzle voltage V, is

V5 - V6 = Vm(t) = V(t) (t dy34, (20)

where Ja and or, are the current and conductivity of the armature, w is the rail separation,
4 and V,, is the resistive voltage drop across the armature. We have used the fact that B

is zero ahead of the armature in this simple geometry and that the current is extremely
small ahead of the armature. This is why the muzzle voltage in Eq. (20) is given by just
the resistive drop in the armature.

We use the path of integration 1-2-3-4 shown behind the armature in Fig. 1 to find
that the breech voltage Vb is

* ,Vb(t) = v 2 -(t

(B(t)wxo(t)) + 2j d + Va(t), (21)" ~dt Bfozot+

where xo(t) is the position of the armature at time t. Here we have used the fact that in
this geometry B, is uniform behind the armature and that the integral 2 --- 3 is the same
as the integral 4 -*1.

8
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The breech voltage lib(t) involves the integral of J, along the rail's inner edge, y = 0.

Equation (17) shows that Vb(t) does not depend on only the values of I' and dI'/dt at time
t, but on their time history. The circuit equation will therefore be an integro-differential
equation. If dI'/dt' in the integral is not too large, as is the case in most rail launchers, we
can simplify the result by doing a Taylor expansion around the upper limit of integration
and carrying out the ' integral. The result is

J'(0t)(t) + AO.b [dI'(t) (22)

1 d 2d31'

6 dt2  30It
which is an expansion in powers of (t - t,). Especially nearer the armature, the contri-
butions of the higher derivatives of I' in Eq. (22) may be neglected compared to the first
derivative. We can now use these results in writing the breech voltage of Eq. (21). We use
the fact that behind the armature, between the rails,

B(x,0,t) =o1(t)/h,

S-,where h is the rail height, and I(t) is the total rail current, I(t) = hI'(t), to write

Vb+t) V [M + I ~ 0 2. b + -(23)
1 dl JZo

+ Vat)+#hvlir dt 0 fx+.

The first term in Vb(t) allows us in this simple geometry to calculate the usual rail
inductance

Lo(t) Ao-XO(t) (24)

proportional to the distance x that the armature has traveled. The second term is the
rail resistance term. The skin depth that enters there involves the time t - t., which is
the time since the armature passed position x. The term Va(t) is the resistive drop in the
armature. The last derivative term in Eq. (23) is a skin inductance term that is small

-i compared to the main inductance in typical railgun situations. The ellipsis indicate the
6 presence of second and higher derivatives from Eq. (22). These would be negligible only

for slowly varying currents.

The effective resistance of each rail can be read from Eqs. (16) and (23). We use the
4definitions of t, and b5 to write the rail resistance at time t as

R(t)= dt' vo(t') (25)

where vo(t) = dxo(t)/dt. R(t) can be expressed in terms of the instantaneous armature
position x only if x is known as a function of t. We note that an elementary derivation of
R(t) would miss the \/7 factor. For example if the armature speed is constant we get

2 v
R(x) = j- XViioo0/ir (26)

* 9
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where we used x = vot. This implies that there is no fixed resistance per length, but rather
that the resistance varies more slowly with length than linearly. The case of constant
acceleration, x = at 2 /2 gives

R (x) =- 4-' a/4 2 )3/4.

Temperature Distribution

The local heating of the rail is proportional to the square of the current densiiy. Solve
the heat diffusion equation

OT 2 jV

pc- - KV 2 T = -,

neglecting the latent heat of melting, where c is the specific heat per mass, p is the mass
density, K is the heat conductivity, and T is the temperature. The general solution of this
equation in our geometry can be given in terms of Green's fundtions. We only need however,
the case of small dimensionless diffusion coefficient, D = Kpor/pc < 1. (D = 0.0053 for
copper at room temperature.) In this case one can veiify that the the heat diffusion is
negligible. During the short time that the current flows, the heat generated at a point
in the rails, f dt J2 /o-, does not have time to diffuse away but rather it stays where it is
produced. The temperature rise at a point is then

T(x, y, t) = ~~~dt' j2(X, Y,t1) (27)=~~a f d'J(~~'

This formula implies that the rate of heating is greater at points near the arc, but it also
says that the higher temperatures are reached at points farther behind the arc (closer to
the breech). This happens because the heat diffusion in this short time is so small, and
because points near the breech are subjected to the current for a longer time. Of course
radiation cooling can affect this.

First we will calculate the temperature at the rail surface for the case of a thick
'.V armature of length 2L. The special case where both the rail current and the velocity are

constant in time allows us to express the current at the rail surface in closed form. Due
to the lack of heat diffusion this will be the most important part of the current needed to
understand the ohmic heating and melting of the surface. The y-component of the surface
current density is zero except in the armature region from = -L to + = L, where it
has the value I'/2L. Recall that I I is the distance along the rail from the point with

-"' coordinate x to the center of the armature. The x-component of the current density at
the y = 0 rail surface is given by

(,00= 7L[M(ko( + L)) - M(ko( - L)(28)

where M(x) [(x + 1)Ko(IxI/2) - IJIK1(xI/2)]e - /
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The temperature at the surface can be found in the approximation of Eq. (27) using the
current of Eq. (28). The integral is readily evaluated numerically. The temperature is

,1If 2 /pc times a dimensionless factor depending on koL and k0o. For koL = 25 and
k0 = -50000, the factor is 3.04; for koL = 25 and ko = -5000 the factor is 2.31. For
koL 2000 and the same i's, the factors are 1.63 and 0.89 respectively.

Again we take copper at room temperature and a speed of 1 km/sec, where the scaling
factor k0 = 8 x 10 4 m-1, so a k0o of 50000 becomes 0.63 m; koL = 25 gives an armature
width 2L of 0.6 rmn; koL = 2000 corresponds to the width 2L of 5 cm. Using the room
temperature values of p and c, and a typical value of the current density 3 x 10 7 Amp/meter,
the factor 3.04 gives a temperature rise of 985 C. The factor 1.63 gives 528 C. The melting
point of copper is 1083 C so these examples do not lead to melting.

The temperature rise is far less sensitive to the length of the arc than it is to the overall
current per height of the rail. This is essentially because the penetration of the current
into the rail is small for a long time; so, even if thc length of the arc is long, all of the
current will eventually have to pass near any given part of the surface. That the current
does gradually move into the rail is reflected in the weak sensitivity of the temperature to
the arc length. A factor of 80 in koL causes a factor of less than 2 in the final temperature.
The weak sensitivity to the armature length L and the strong 1,2 dependence implies that
the arc height is more important than the arc length in raising the temperature. Local
pinching of the arc and concentration of the current can then give local melting. In the
examples of the previous paragraph, the copper will reach its melting point at 0.63 m away
from a 6 mm wide armature if the current is increased by 5%. In the case of the 5 cm long
armature, a 40% change in current will be required.

The thin armature results can be used to model lateral pinching of the arc into a
sheet of current. In reality current filaments form spots, not sheets of current. However,
many filaments moving together, as are sometimes observed, might be approximated by a
sheet. We calculate the temperature rise in the case of the thin armature with constant
current and velocity. Remarkably simple analytic results will be obtained. We substitute
the asymptotic form of the current in Eq. (15) into Eq. (28) and obtain

T(x, °y,t - . _ <e-ko(+r') [ '1 1 (29)

27rpc ' [ r]

where r' = '2 + y 2 . We have changed variable of integration in Eq. (27) from t' to
C I = x - zo(t'), with xo(t) = vt, and we have let I' = P, where the subscript s indicates
that this is the current per height through a sheet. The upper limit of zero comes from
the fact that there is very little current ahead of the armature, so a point begins to receive
heat essentially only after the armature passes it, for t' > t, or < 0. For the domain
where the current has been passing for a time, that is, for < 0 and fkoC > 1, with y fixed
and small, the integral can be approximated still further. As ' varies over its domain,
the quantity ' + r' stays nearly equal to zero, and all the exponentials are then equal to
one. Deviation from this approximation occurs only in the neighborhood of ' = 0. The
integrand can now be approximated by replacing the exponential with a step function.

11
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The resulting integral is then

T 1 , 10 I0 d2_o

This is easily evaluated to be

T I sinhI 2 in (2 (30)
7rC c 7v Y)

From Eq. (30) we see that the isotherm with temperature Tm is the straight line with
equation

exp rPc T-] (31)

For copper, the coefficient in this expression is about

I.0 = 1.1 x 10-13 oCm 2 /Amp 2.
7rpc

The remarkably simple expression in equation (31) has several interesting conse-
quences. The amount of surface melting can be estimated from it if we neglect the latent
heat of melting. If the temperature Tm is set equal to the melting point of the rail, we
can find the depth to which a given current sheet will melt the surface. For copper, and a
current sheet I' = 300, 000 Amps/cm of rail height, the slope, ly/z1, of the melting curve
is found to be 3.0 x 10'. The mass of material melted will then be

= pR 2hexp ,(32)
4 L/1oI" 2 mj (2

where p is the density, R is the length of the rail, and h is the rail height. The exponential
dependence of the melted mass, m, on the rail parameters should be noted. Taking
P = 300,000 Amps/cm, p = 8.9 gm/cm 3 , R = 400 cm, h = 1 cm, and Tm = 1,083 'C, we
obtain m = 5.2 grams for copper rails. The large amount of melting is due, of course, to
the large value used for the current sheet.

Conclusion

The calculations above have been done for an idealized geometry where there are no
variations in the z direction. These simplifications were introduced in order to be able to
treat the time dependent problem analytically. The formulas obtained, however, should
be of value in understanding the performance of railguns. We believe that despite the
simplifications, reasonable estimates of rail currents and temperatures can be made using
our methods.

We emphasize one of the most interesting results of this paper. This is the possibility of
local current density reversals when dI'/dt becomes negative. This is simply an inductance
effect. The current reverses direction to try to prevent a decrease in the value of B,(x, y, t)

12



in the rail. The same reversal can occur in parts of the armature in a real case. The
r,-versal in the armature does not occur in our model because we assume a known current
density distribution in the armature and rigorously compute the current in the rails. In
the real problem the current distribution in the armature is zot specified; only the total
current is. Then a decrease in the total current would decrease the magnetic field in the
interior of the armature. The current density in the rear of the armature could easily
reverse then, just as it did near the rail edge in Fig. 2, in order to try to keep up the
value of the magnetic field in the interior of the armature. The portion of the armature
where the current is reversed could then be subject to a magnetic force directed toward the
breech. This would have a powerfully disruptive effect in the case of a plasma armature.
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TWO DIMENSIONAL TIME DEPENDENT
MIlD SIMULATION OF PLASMA ARMATURES

M. A. Huerta and G. C. Boynton
University of Miami
Physics Department

N. Coral Gables, FL 33124

Abstract
We report on our development of a two dimensional MHD code to simulate internal

motions in a railgun plasma armature. We use the equations of resistive MHD, with Ohmic
heating, and radiation heat transport. We use a Flux Corrected Transport code to advance
all quantities in time. Preliminary runs show the growth and subsequent shedding of vortex
structures in response to a small perturbation upon an initial equilibrium.*

Introduction
In a railgun the armature carries the current across from one rail to the other and

is subjected to a powerful J x B magnetic force that pushes it against the rear of a
projectile. In many cases the strong heat produced by the current generates a plasma

%armature. The plasma armature is then a hot, high density, high pressure arc undergoing
rapid acceleration. The magnetic force compresses the plasma and causes a high pressure
at the front, where the plasma pushes against the projectile. The pressure takes a profile
that diminishes toward the rear as the plasma approaches a region of much lower pressure
and density

Much of the modeling of plasma armatures in railguns begins with the one and two
dimensional, infinite rail height, MHD models of Powell and Battehl ' 2 . Their models
describe a great deal of the physics, including radiation transport, and the degree of plasma
ionization. Those models assume that the plasma is in a steady state with no flow in the
frame of the ac-elerating armature, and yield profiles of the magnetic field, and of the
fluid properties in the armature. Some work has been reported by Sloan3 on extending
the steady models to three dimensions.

The steady state assumption is an important limitation of those models. The calcu-
lations of Huerta and Decker 4'5 , as well as those of Powell 6, give that the steady plasma
armature is subject to the MHD flute instability that occurs when a magnetic field acceler-
ates a plasma. The flute instability causes two dimensional corrugations of the rear of the
plasma that, together with ensuing flows, may destroy the simple steady states found by
the methods of Refs. [1]-[3]. Recently 7',, studies have been reported on one dimensional
time dependent models. These numerical studies emphasize armature initiation phenom-

* ena, and are not able to assess the effects of two dimensional instabilities on the overall
re steady state.

%We report our work on a two dimensional, MILD, infinitely tall rail, time dependent

%numerical simulation of the behavior of the plasma armature. Our model is capable of
describing not only the growth of the flute instability, but also other two dimensional

* This work supported in part by the Air Force Office of Scientific Research tinder grant

number 84-0116.
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effects, such as the shedding of plasma at the rear of the arc, and convective transport in
the armature. We also seek to describe current filamentation, possible current reversal due
to a drop in total current, armature disruption due to the rearward forces on the reversed
currents, as well as a variety of waves, and shocks.

The numerical solution of the governing two dimensional MHD equations is accom-
plished with an algorithm which is designed to take advantage of the architecture of Multi-
Vector processor supercomputers.The basic algorithm for advancing the critical quantities
in time is a finite difference, explicit, Eulerian, Flux Corrected Transport (FCT) sub-code

K, which closely follows an algorithm developed at NRL9'1 .

The Governing MHD Equations
The plasma is collision dominated and can be described by the equations of magne-

tohydrodynamics subject to the usual limitations of MHD 11 . The plasma is treated as a
single fluid of density p, velocity v, pressure p, energy per unit mass e, and temperature
T. We choose the x-axis along the rail direction, from the projectile back toward the
breech, and the y-axis is transverse to it, opposite to the direction of the current in the
armature, with the z axis along the direction of the magnetic field between the rails. The

* projectile moves relative to the rails with a velocity vp toward the muzzle. Our coordinate
system is fixed to the projectile. When we speak of the fluid velocity v, the electric field
E, or any other quantity, we mean it as measured in the frame of reference that moves
with the armature, unless otherwise specified. It is easy to show that the only relevant
(vP < c) change in the fluid and Maxwell equations brought about by our choice of moving
coordinate system, is the appearance of a "gravity term g" in the momentum equation,
where

dv" g =Z gX = --T-x. (1)o

Therefore, as the armature gains speed toward the muzzle, g = dvp/dt > O,and g points
toward the breech. All quantities are taken independent of z in our two dimensional
model (translational invariance along the z axis, 0 = 0/Oz as for infinitely tall rails). The
magnetic field only has a z component, but the fluid velocity, and the current do not have
z components.

In MHD the relevant Maxwell equations are

V.B=0, VXE 0B

and
V x B = 0J• (3)2

The displacement current has been neglected in Ampere's law, Eq. (3), because only
frequencies much lower than a/eo are considered. The electric field is given by a simple
Ohm's law

J = o,(E + v x B), (4)?

where o, is usually taken as the Spitzer conductivity'. Solving Eq. (4) for E, eliminating
J using Eq. (3) and substituting into Eq. (2) one obtains the equation that advances B in

2



time
0--T 

+  
j + a 1 (5)4

The quantity 1//p0a inEq. (5) is a coefficient of magnetic diffusion. When the magnetic
diffusion coefficient is small (large o,), the magnetic field tends not to diffuse, but rather
to be convected along with the fluid. When the diffusion coefficient is large, the magnetic
field diffuses through the conducting fluid. The tall rails carry a current I' per unit height.
A real rail of height h carrying a current I is modelled by a current

I

I'I = - (6)4.h'

In the space behind the armature, where there is no current, the magnetic field is
uniform with the valueSBz(t) = tpoI'I(t). (7)4b

In MHD the plasma is treated as a single conducting flltid even though it consists of

several fluids. The inertia is carried essentially by the heavy particles. The electron fluid
is not treated explicitly but has its effect via the current J. The fluid equations axe the
usual ones. First the equation of mass conservation

19, + V pv =0, (8)5

which advances p in time. The fluid velocities v. and vy are advanced by the equations
for the x and y components of momentum,

0(pv0 I 2 dvp
at(pv,) + VpvJ) a (P + 1 2  ) + p--j--, (9)6

and
o(pv) + V (PVV) ( + 1 B). (10)-

at
In Eqs. (9) and (10), the magnetic force J x B has been rewritten by eliminating J as
usual from Eq. (3). This makes the magnetic force appear as the gradient of a magnetic

1k
"  pressure B2/2to. The fluid pressure p is advanced from the equation for the energy e per

unit mass,

a(pe) 2 1)
at0, 0

and relating p to e using an energy equation. The simplest energy equation is for the
monoatomic ideal gas with f = 5/3,

e = (- - 1)p/p. (12)9

There are several effects, such as variations in the degree of ionization,that require modifi-
cation of Eq. (12). The temperature T is introduced via an equation of state. One of the

* "simplest 1 is for an ideal gas of ions and electrons

p (1 + a)pkBT/mo, (13)io

3
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where a, the ratio of electrons to heavy particles, is discussed in Ref. [1], and m 0 is the
mass of the ion or neutral particle. The current dependent terms in the right hand side of
Eq. (11) represent Ohmic heating. The term with the heat flow vector q, represents heat
transfer. The form of q in terms of T for radiation transport in the diffusion approximation
is given in Ref. [1].

Boundary conditions
The front boundary of the plasma, at x = 0 is up against the back of the projectile.

The plasma pressure acting over the rear area of the projectile provides the force that
pushes the projectile forward and must satisfy the boundary condition

J W dvp 1)0
f p(x = 0, y, t) h dy = ap --- -,1 )1o

where w is the rail separation.

We have placed a low density region of zero conductivity inside the region of computa-
tion at the rear of the plasma. The conductivity is set to zero when the density falls below

* a certain threshold value which we take approximately five hundred times less than the
density near the projectile. This boundary between a region of conductivity and a region
of no conductivity has to be treated carefully since it is not a fixed boundary. In the region
of no current the fluid properties are still calculated and advanced in time from the fluid
equations. The magnetic field, however, is simply uniform in the rear J = 0 region, and
given by Eq. (7). As soon as the density at a cell rises above the threshold density for
conductivity, its properties are advanced with the full set of MHD equations.

The rails are treated as infinitely conducting. We take the boundary condition that the
tangential electric field in the frame of the rails is zero. This forces the normal derivative of
the magnetic field, aB,/8y to be zero at the rail surfaces. The value of 8B,/fy at the rails
is needed in the right hand side of Eq. (5), because of the second derivative with respect
to y, to advance B, at the center of a cell adjacent to a rail. At the rear of the projectile
we have J, = 0, which sets B, = constant, in fact zero, along the x = 0 boundary. This
enables us to calculate the second derivative of B, with respect to x at a cell adjacent to
the projectile. The other boundary conditions are standard except for the heat flow vector

* at the boundaries of the plasma. Here, in order to evaluate V • q in the right hand side
of Eq. (11) we need the normal component of q at each boundary. Physically we need
a statement of how the plasma radiates to its surroundings. A variety of conditions are
possible, such as the one used in Ref. [1],

q, = 2cr. 4(15)ml

where q, is the component of q along the outward normal at the plasma boundary, and
Tb is the plasma temperature at the boundary. The factor of 2 in Eq. (15) is explained by
Zeldovich 12 . The radiation that leaves the plasma actually comes from some distance in

* its interior, where the temperature is a bit higher than at the surface, 21/4 higher.

Numerical Methods
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We do a two dimensional, Eulerian calculation using a fixed rectangular array of
square cells. A typical grid will have 20 cells in the y direction to cover the one cm rail
separation, and 240 cells in the x direction. The main conducting plasma, which initially
is set at 10 cm length, extends from cell 1 to 200. Beyond cell 200 we have a low density,
nonconducting gas region that extends to the end of the computational region at cell 240.
As the flows develop, any gas on a cell in the 24 0 th row, with a velocity to the rear, is
allowed to escape.

The time integration uses a simple midpoint rule which is second order accurate.
The driving variables are determined at the half step by a forward differenced first-order
algorithm, and are then used to advance all the variables a full time step in a time centered
manner. We use a one dimensional FCT9° " code that is optimized for a vector processor.
In order to preserve the optimization we do the two dimensional problem with the one
dimensional FCT, and a time step splitting technique13 . The time step splitting technique
can also take advantage of the capabilities of multi-processor machines.

This FCT is an explicit, finite difference technique that is essentially second order
accurate, and has strict limits on its stability. It imposes, however, the further conditions
that densities, such as p, and e remain positive. This makes it of indeterminate order, but

* enables it to yield physically realistic and accurate results, even in the presence of inviscid
shocks and steep gradients. The algorithm provides fourth order accurate phases and

i! minimum residual diffusion. It consists conceptually of two stages. The usual transport
'14stage is followed by a corrective antidiffusive stage. FCT has been used by Emery14 , for

example, in the study of Rayleigh-Taylor instabilities on the surface of targets accelerated
by laser ablation.

Results

The code is optimized to run on a supercomputer with vector processing, but so far
we have only run preliminary tests on a VAX 8650, where it runs rather slowly. With a
grid of 20 x 240 cells, it advances some 1,000 time steps in about one hour of CPU time.

We report preliminary results. We have set up programs to do simulations with
parameters similar to Ref. [1]. A typical case has a plasma of copper ions, m 0 = 1.1 x 10-25
kg, with a projectile mass of mp = 2 gin, and a plasma mass of .065 gin. The railgun cross
section has h = 1 cm, and w = 1 cm. The preliminary runs have an adiabatic energy

* equation (zero right hand side in Eq. (11)), and all the atoms doubly ionized, with degrees
of ionization x1 = 0, X 2 = 1, as defined in Ref. [1]. For the current per unit height we take
I' = 2 x 10' Amp/m. This produces a magnetic field of 87r T from Eq. (7). The pressure

•on the projectile is of the order of 2,500 atmospheres and the projectile acceleration is

2.6 = I x 1 (ohm-m) - 1, that is turned off to zero where the plasma density falls below

2.61 X 10-2 kg/m' at the plasma rear. The linear growth rate of the flute, or interchange
instability, is about

Eq. (16) is the same 4' 6 as the Rayleigh-Taylor, or Kruskal-Schwarzschild rate. According
to this, we expect the interchange instability to develop with a growth rate of 8.6 X 104

5
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sec - 1 in this example.

The grid has 240 cells along the x axis. At t = 0 we set up a plasma equilibrium
that, except for the temperature, is pretty much as calculated in Ref. [1]. The plasma
is 10 cm long and extends to cell 200. The initial temperature is made uniform and set
at 6.72 x 104 K. The plasma is initially at rest in the frame of the projectile except for a
velocity perturbation of 10 m/s in v, from cell 199 to 201. The velocity perturbation varies
sinusoidally in y with a wavelength of 2/3 cm or about 13 y-cells. The v, perturbation
is set positive (rearward) near the walls, and negative near the center. In the same cells
we also perturb the pressure by 2% of its local equilibrium value with the same variation
in y as the velocity perturbation. We also perturb the pressure, again by 2% of its local
equilibrium value, in the interior of the plasma, corresponding to cells 99-101.

4We find that the calculation is numerically unstable for time steps longer than about
At = 2 x 10- 9sec. This is as expected from the Courant"5 condition, vlAt < Ax, due to
the large local velocities produced in the low density region. To simulate a shot down a
one meter long barrel requires a flight time of about 0.4 x 10- sec. This amounts to some

* 2 x 10' time steps. In the VAX 8650 this would amount to some 200 hours of CPU time.

We show the results of a run that used At = 1.86 x 10 . 9 see, and went for 40,500
steps, a total time T = 7.5 x 10- ' sec, and required about 40 hours of CPU time on the
VAX 8650. According to the linear growth rate of Eq. (16), the perturbation should grow
by c-,T z e6"4 . Fig. 1 shows the pressure profile at t 0. The initial 2% perturbation is
practically invisible in the profile.

Fig. 1. Pressure profile at t=0, s=0, cells 180-210.

Fig. 2 shows the current J after 7,000 time steps, t = 13 x 10-6sec, distance travelled
s = 1.0 x 10- 3 m, projectile velocity v, = 1.6 x 102m/sec and projectile acceleration
ap = 1.22 x 107m/seC2. It shows that the conducting boundary has oscillated, and a
dominant mode is developing.
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Fig. 2. J at 7,000 steps, t 13 s 1.0 x 10-m, cells 180-210.

. , Fig. 3 shows the pressure profile after 17,500 time steps, t = 3.3 x 10-5sec, 3

6. X 103M10 11M/e

V= 4.0 x m/se and ap 1.22 x It has a noticeable bulge.

Fig. 3. Pressure profile at t 3.3 x 10-sec, s =6.5 x 10-'m, cells 180-210.

Fig. 4 shows the pressure profile after 27,000 time steps, t 5.0 x 10- sec, s

1.5 X 1O-2M, V = 6.1 X 102m/sec and a 1.22 x 107m/sec2 .
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Fig. 4. Pressure profile at t 5.0 x iO0- sec, s 1.5 x 10-2 m, cells 180-210.

Fig. 5 shows the current also after 27,000 time steps. It shows further boundary
deformation.

I 7 -T --I -

Fig. 5. J t2,0Ises 10- see s . 0-M els1020
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Fig. 6. v at t = 5.0 x 10-5sec, s 1.5 x 10- 2m, cells 160-190.

, Fig. 7 shows the pressure profile after 40,500 time steps, t 7.5 x 10-sec, s
3.5 X 10-2m, v = 9.2 x 10 2m/sec and ap 1.22 x 10 7m/sec 2 .

d.

LFig. 7. Pressure profile at t =7.5 x 10 'sec, s 3.5 x 10-'m, cells 185-215.

S
I

Fig. 8 shows the current also after 40,500 time steps. It shows that the boundary
deformation is beginning to get important. Even though the armature has travelled only
3.5 cm, there is already a bit of plasma shed at the rear. The linear growth rate gets

LW larger for the shorter wavelength modes. However, they do not appear to grow to large
V& amplitudes. This is due to nonlinear saturation effects, as also found by Emery"4 .
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Fig. 8. J at t =7.5 x 10 sec, s = 3.5 X 10'm, cells 185-215.
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